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Chirality induction of polyaniline derivatives through chiral
complexation
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Abstract—Chirality induction of p-conjugated polyaniline derivatives was achieved by chiral complexation with chiral palladium(II)
complexes. The crystal structure of the chiral conjugated complex with a model compound of the polyaniline, N,N-bis(40-dimeth-
ylaminophenyl)-1,4-benzoquinonediimine, revealed a chiral propeller twist conformation of the p-conjugated moiety.
� 2004 Elsevier Ltd. All rights reserved.
Polyanilines are one of the promising electrically con-
ducting polymers with chemical stability.1 In recent
year, there has been increased interest in chiral induction
of polyanilines because of their potential use in diverse
areas such as surface modified electrodes, molecular
recognition, and chiral separation.2 Chiral polyaniline
has been reported to be formed only by chiral acid
dopant.3 In previous papers, complexation of polyani-
lines with transition metals modulates the redox prop-
erties of the emeraldine base, which is related to the
catalytic function in the oxidation reaction.4 Further-
more, the controlled complexation with palladium(II)
compounds has been achieved to afford the cross-linked
network or single-strand conjugated complex,5a in which
the quinonediimine moieties serve as bridging coordi-
nation sites.5 Use of chiral complexes is envisioned to
induce chirality to a p-conjugated backbone, giving the
chiral d,p-conjugated complexes. In this context, we
herein report a new method for chirality induction of
polyaniline derivatives through complexation with chi-
ral palladium(II) complexes.

Chiral palladium(II) complexes, [((S,S)-L1)Pd(MeCN)]
((S,S)-1) and [((R,R)-L1)Pd(MeCN)] ((R,R)-1),6 were
designed and prepared by treatment of Pd(OAc)2,
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respectively, with the N-heterocyclic tridentate podand
ligand, N,N0-bis(S-1-methoxycarbonyl-2-phenylethyl)-
2,6-pyridinedicarboxamide [(S,S)-L1H2] and N,N0-bis-
(R-1-methoxycarbonyl-2-phenylethyl)-2,6-pyridinedicarb-
oxamide [(R,R)-L1H2] in acetonitrile. Treatment of the
emeraldine base of poly(o-toluidine) (POT)7 in THF
with (S,S)-1 led to the formation of the chiral conju-
gated polymer complex, [POT–((S,S)-L1Pd)] ((S,S)-2),8

as shown in Scheme 1. The electronic spectrum of (S,S)-
2 in THF exhibited a broad absorption around 500–
900 nm, which is probably due to a low-energy charge-
transfer transition with significant contribution from
palladium (Fig. 1). This result indicates the coordination
of the quinonediimine nitrogen atoms to the palladium
centers. It should be noted that the complex (S,S)-2
exhibited an induced CD (ICD) around 500–850 nm.
Furthermore, the mirror image of the CD signal was
observed with (R,R)-2, which was obtained from (R,R)-
1 (Fig. 1). These findings support that the chirality
induction is achieved by the chiral complexation.

To gain further insight into chirality induction, the
chiral complexation with a model compound of poly-
aniline, N,N0-bis(4-dimethylaminophenyl)-1,4-benzo-
quinonediimine (L2),9 was investigated. The
complexation of L2 with 2 molar equiv of (S,S)-1 or
(R,R)-1 afforded the chiral conjugated 1:2 complex
[((S,S)-L1)Pd(L2)Pd((S,S)-L1)] ((S,S)-3) or [((R,R)-
L1)Pd(L2)Pd((R,R)-L1)] ((R,R)-3), respectively.10 The
electronic spectrum of (S,S)-3 in CH2Cl2 exhibited a
broad absorption around 600–900 nm in Figure 2,
probably due to the similar complexation as mentioned
above.
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Figure 1. CD spectra (top) of (S,S)-2 and (R,R)-2, and electronic

spectra (bottom) of (S,S)-2 and POT in THF (1.3· 10�3 M).
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Figure 2. Electronic spectra of 1, 3 and L2 in CH2Cl2 (5.0· 10�5 M).
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Variable temperature 1H NMR studies of the conju-
gated complex (S,S)-3 indicated interesting molecular
dynamics in solution. The phenylene protons of the
quinonediimine moiety of the syn-isomer were observed
at 9.14 and 7.14 ppm as singlet peaks, whereas the anti-
isomer exhibited doublet peaks of those protons at 7.84
and 6.92 ppm. As the temperature was lowered, the
peaks of the conformer (S,S)-3syn increased gradually.
The equilibrium constant Keq between (S,S)-3syn and
(S,S)-3anti was calculated from variable temperature 1H
NMR spectra. The temperature dependence of Keq was
used to construct the van’t Hoff plot of ln Keq versus
K�1.11 The complex (S,S)-3syn is enthalpically more
favorable than (S,S)-3anti in CD2Cl2 by 2.3 kcal mol�1,
but entropically less favorable by 11.0 cal mol�1 K�1.

The mirror image relationship of the CD signals around
CT band of the quinonediimine moiety was observed
between (S,S)-3 and (R,R)-3 in CH2Cl2 as shown in
Figure 3. The ICD around 600–900 nm appears to be
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Figure 3. CD spectra of 1 (1.0· 10�4 M) and 3 (5.0 · 10�5 M) in

CH2Cl2.



Figure 4. (a) Top view and (b) side view of the X-ray crystal structure of (R,R)-3syn (hydrogen atoms are omitted for clarity).
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reflected by the chirality of the palladium(II) complexes.
Such ICD was not observed in the case of 1. These re-
sults suggest that chirality of the quinonediimine moiety
is also induced through chiral complexation.

Further structural information was obtained by the
single-crystal X-ray structure determination.12 The
crystal structure of (R,R)-3 indicates that the two
[(L1)Pd] units are bridged by the quinonediimine moiety
of L2 to form the C2-symmetrical 2:1 complex (R,R)-
3syn with the Pd–Pd separation 7.59 �A, as depicted in
Figure 4. Each phenylene ring of L2 has an opposite
dihedral angle of 47.3� with respect to the quinonedii-
mine plane, resulting in a propeller twist of 75.6� be-
tween the planes of the two phenylene rings (Fig. 5). The
chirality of the podand moieties of [(L1)Pd] is considered
to induce a propeller twist of the p-conjugated molecular
chain. The similar complexation behavior is assumed to
be the case with the polymer complexation. The random
twist conformation of POT might be transformed into
the helical conformation with a predominant screw
sense through the complexation.

In conclusion, chirality induction of emeraldine and
quinonediimine derivatives was demonstrated by chiral
complexation with the quinonediimine moiety. The
stereoselective controlled formation of the conjugated
complexes is achieved through the complexation. The
chiral d,p-conjugated complexes might be of potential as
functionalized materials and asymmetric catalysts.
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Figure 5. Schematic representation of (R,R)-3syn.
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